
A Systematic Study on Agile Software
Development Methodologies and Practices

Harleen K. Flora1, Swati V. Chande2

1Research Scholar, The IIS University, Jaipur, India
2Professor, International School of Informatics and Management, Jaipur, India

Abstract - Software engineering techniques have been
employed for many years to create software products. The
selections of appropriate software development methodologies
for a given project, and tailoring the methodologies to a
specific requirement have been a challenge since the
establishment of software development as a discipline. In the
late 1990’s, the general trend in software development
techniques has changed from traditional waterfall approaches
to more iterative incremental development approaches with
different combination of old concepts, new concepts, and
metamorphosed old concepts. Nowadays, the aim of most
software companies is to produce software in short time
period with minimal costs, and within unstable, changing
environments that inspired the birth of Agile.
Agile software development practice have caught the attention
of software development teams and software engineering
researchers worldwide during the last decade but scientific
research and published outcomes still remains quite scarce.
Every agile approach has its own development cycle that
results in technological, managerial and environmental
changes in the software companies. This paper explains the
values and principles of ten agile practices that are becoming
more and more dominant in the software development
industry. Agile processes are not always beneficial, they have
some limitations as well, and this paper also discusses the
advantages and disadvantages of Agile processes.

Keywords - Agile Software Development, Agile Methodologies,
AUP, AM, AUP, DSDM, FDD, XP, Scrum, Lean, Kanban,
Crystal.

I. INTRODUCTION
The Waterfall Model is a sequential development approach,
in which development flows downwards through the phases
of requirements analysis, design, implementation, testing
and maintenance.
In waterfall model, project is divided into sequential
phases; emphasis is on planning, time schedules, target
dates, budgets and implementation of an entire system at
one time. Tight control is maintained over the life of the
project via extensive written documentation, formal
reviews, and approval/signoff by the user and information
technology management occurring at the end of most
phases before beginning the next phase.
The waterfall methodology normally doesn’t allow
complete moving on the next stage unless the previous
stage is fully completed and verified however there are few
advantages and pitfalls in this methodology. The Waterfall
model is a traditional engineering approach applied to
software engineering. It has been widely blamed for several
large-scale government projects running over budget, over

time and sometimes failing to deliver on requirements due
to the Big Design Up Front approach.
1.1 Agile Software Development
Agile Development Model is based on iterative and
incremental development approach in a highly collaborative
manner to produce high quality software in a cost effective
and timely manner which allows the project to adapt the
changes quickly. Agile methodologies stresses on
delivering the smallest working piece of functionality as
early as possible and constantly improving it and adding
additional functionality throughout the project lifecycle.
Agile helps in minimizing and mitigating the overall risk,
and allows the project to adapt to changes quickly and does
not require a requirements freeze upfront unlike waterfall
model. Work is carried out in iterations, which typically last
one to six weeks. The industry mostly opts for agile
development process as it is highly result oriented. Agile
methods emphasize effective communication over written
documents. The Project requirements are well documented
upfront. Then, depending upon business priority, these
features are assigned to releases, which are tied to
iterations. Agile methods emphasize working software as
the primary measure of progress. The key characteristics of
the agile methodology are delivering frequently,
incremental and iterative approach, less defects, continuous
testing and integration, collaborative approach and
maximum ROI.
Although, there are many success stories of using Agile in
software development project in last decade but knowledge
of implementing these practices in a particular project is
very scared. Therefore, this publication aims to
systematically review the existing literature on agile
software development techniques and to understand the
features, benefits and challenges of using various agile
techniques. This paper also provides the benefits and
limitations of Agile Software Development and
recommends when to use them.

1.2 Agile Manifesto
In recent years, with the rising competence of software
market, researchers are seeking more flexible methods that
can be used to adjust to dynamic situations where software
system requirements are changing over time. In 2001, the
Agile manifesto [1], established the approach now known
as agile software development process created by 17
influential figures, a guiding force for Agile practitioners
which details four core values for enabling high-
performance, efficiency and outputs:

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3626

1. Individuals and their interactions, over processes and
tools.

2. Delivering working software, over comprehensive
documentation.

3. Customer collaboration, over contract negotiation.
4. Responding to change, over following a plan.
The items on the right have value, however, the items on
the left define the agile philosophy. Exploring each of these
values will aid in gaining knowledge of the agile process
philosophy while exposing how applying the philosophy to
defined methods will enhance software development
aligning it with today’s volatile markets.
1.3 Agile Principles
The Agile Alliance also documented the principles they
follow that underlie their manifesto [2]. As such the agile
methods are principle-based, rather than rule-based. Rather
than have predefined rules regarding the roles,
relationships, and activities, the team and manager are
guided by these principles:
1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.
2. Welcome changing requirements, even late in

development. Agile processes harness change for the
customer's competitive advantage.

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

4. Business people and developers must work together
daily throughout the project.

5. Build projects around motivated individuals. Give them
the environment and support they need, and trust them
to get the job done.

6. The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good
design enhances agility.

10. Simplicity, the art of maximizing the amount of work
not done is essential.

11. The best architectures, requirements, and designs
emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

II. AGILE METHODOLOGIES
Several Agile techniques have been proposed and used by
researchers in difference domains. This section identifies
some of the well-known existing agile software
development methods and their objectives. Following
various Agile methodologies share common principles, but
differ in practices:
2.1 Extreme Programming (XP)
2.2 Scrum
2.3 Lean Software Development (LSD)
2.4 Kanban

2.5 Adaptive Software Development (ASD)
2.6 Feature Driven Development (FDD)
2.7 Dynamic System Development Method (DSDM)
2.8 Agile Modeling (AM)
2.9 Crystal
2.10 Agile Unified Process (AUP)

2.1 EXTREME PROGRAMMING (XP)
A. Background
It was introduced in 1998 by Kent Beck, Ron Jeffries, Ward
Cunnigham based on experience from C3 project [3].
B. Philosophy and Scope
Extreme Programming (XP) is a well-known and a light
weight discipline of software development that focuses on
engineering practices. XP aims at enabling successful
software development despite unclear or constantly
changing software requirements. It is a system of practices
which is intended to improve software quality and quickly
addresses the changing customer requirements to meet
business needs. It consists of gathering informal
requirements from on-site customers, organizing teams of
pair programmers, developing simple designs, continuous
refactoring, continuous integration and testing; and
advocates frequent releases in short development cycles
that improves productivity as well introduces checkpoints
where new customer requirements can be embraced [4,5,6].
XP is best suited for projects that require collocated teams
of small to medium size team. On the project side XP is
meant for projects where the requirements are unstable and
unpredictable.
C. Features and Benefits
Team Size: 2 to 12 members and preferably co-located
Iteration Length: Usually 1 to 3 weeks.
XP Phases: It has 6 phases: Exploration (write story for
current iteration), Iteration Planning (Prioritize Stories,
effort and resource estimates), Iteration to release
(Analysis, design, coding, testing), Production (Rigors
testing), Maintenance (Customer supports, release for
customer use), Death Phase (No more requirements).
XP Values: It is based on 4 values:
a. Communication: It is definitely a key factor to the

success of any project as most projects fail because of
poor communication. It is accomplished by
collaborative workspaces, co-location of development
and business space, paired development, frequently
changing pair partners, frequently changing
assignments, public status displays, short stand-up
meetings and unit tests, demos and oral
communication, not documentation.

b. Simplicity: It means to develop the simplest product
that meets the customer’s needs. It encourages
delivering the simplest functionality that meets
business needs, designing the simplest software that
supports the needed functionality, building for today
and not for tomorrow and writing code that is easy to
read, understands, maintains and modify.

c. Feedback: It means that developers must obtain and
value feedback from the customer, from the system,
and from each other. It is provided by aggressive
iterative and incremental releases, frequent releases to

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3627

end users, co-location with end users, automated unit
tests, automated functional tests.

d. Courage: It means to be prepared to make hard
decisions that support other principles and practices.
Courage is required to do the right thing in the face of
opposition and do the practices required to succeed.

XP Activities: Coding, Testing, Listening, Designing
XP Practices: It is based on following 12 practices:
a. Planning Game: It is collaboration between a customer

and the developers where planning for the upcoming
iteration is done, user stories are provided by the
customer, technical persons determine schedules,
estimates, costs, etc.

b. Small Releases: It supports the planning game. Small
releases are in terms of functionality and less
functionality means releases happen more frequently.

c. System Metaphor: XP teams develop a common vision
of how the program works which is called metaphor. It
is the oral architecture of the system which describes
how the program works.

d. Simple Design: Do as little as needed and provide
simplest possible design to get job done. The
requirements will change tomorrow, so only do what’s
needed to meet today’s requirements.

e. Test Driven Development: XP teams focus on
validation of the software at all times. Programmers
develop software by writing tests first, and then
software that fulfills the requirements reflected in the
tests. Customers provide acceptance tests that enable
them to be certain that the features they need are
provided.

f. Refactoring: XP teams improve the design of the
system throughout the entire development. This is done
by refactoring out any duplicate code generated in a
coding session. Refactoring is simplified due to
extensive use of automated test cases.

g. Continuous Integration: New features and changes are
worked into the system immediately. XP teams focus
on validation of software at all times. Programmers
develop softwares by writing tests first, and then code
that fulfills the requirements reflected in the tests. And
customers provide acceptance tests that enable them to
be certain that features they need are provided.

h. Collective Code Ownership: It idea that all developers
own all of the code and enables refactoring.

i. Pair Programming: XP Programmers write all
production in pairs, two programmers working together
at one machine.

j. Coding Standards: All code should look the same, it
should not possible to determine who coded what
based on the code itself

k. On site Customer: It acts to “steer” the project as
customer provides quick and continuous feedback to
the development team.

l. 40 Hour Week: The work week should be limited to 40
hours. Regular overtime is a symptom of a problem
and not a long term solution.

D. XP Roles and Responsibilities
XP Coach: Guides team to follow XP process.

XP Customer: Writes stories, functional tests and sets
implementation priority.
XP Administrator: Setup programmer environment and act
as local admin.
XP Programmer: Writes tests and code.
XP Tracker: Tracks iterations such as program/ project
manager, and provides gives feedback on accuracy of
estimates and traces progress of iterations.
XP Tester: Helps customer write functional tests and runs
functional test and maintains testing tools.
XP Consultant: An external member who guides the team
to solve problems. Manager makes decisions.
E. Limitations
 XP is not suitable for large, difficult or complex

projects.
 It requires great amount of coordination between the

programmers while doing pair programming and any
small conflict may damage the objective of collective
code ownership and hence impact the iterations.

 Development of ‘metaphor’ is required to be shared
within team carefully to ensure the common
understanding of the terminology.

 Pair programming is a very important practice in XP.
However, it cannot be applied to one-developer-
projects. Customer collaboration is not very strong.
Testing and code development is done by the same
person. All the possible problems may not be found
because the developer tests from the same perception
the product is built.

2.2 SCRUM
A. Background
It was first described by Jeff Sutherland, Ken Schwaber,
Mike Beedle in 1996 [7]. It focuses on Agile project
management technique rather than development aspect of
projects. Scrum is more focused on managerial skills of
both managers and developers. Thus, theoretically, scrum
can be applied to any industry.

B. Philosophy and Scope
Term ‘Scrum’ is taken from the game ‘Rugby’ where
player passes the ball in steps to hit the goal, which is
similar as moving project in iterations to meet the core
objective. Scrum is iterative, incremental process to
develop any project/product or managing any work. It is a
light weight software development process consisting of
implementing a small number of customer requirements in
two to four week sprint cycles. The continuous integration
using small sprint reduces the risks and help gaining client
confidence. Daily stand-up meeting is very powerful
approach to manage and drive the sprint and hence project
[8].
Teams should be small comprising about seven to ten
people. It can be scaled to larger numbers. The
methodology is aimed at project management in changing
environments.

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3628

C. Features and Benefits
Team size: Scrum team is usually 5 to 7 members
Iteration length: sprint length is 2-4 weeks
Phases of Scrum: Pre-Game (Preparation of product
backlog list, effort assessment, high level architectural
design); Development (Sprints, analysis, design, delivery)
and Post-Game (System testing, integration testing,
documentation releases).
Values: Scrum strongly supports the values of Respect,
Commitment, Focus, Courage, and Openness.
Techniques: Team creation, Backlog creation, Project
segmentation, Scrum meetings, Burn down charts.
4 Meetings: Sprint planning meeting, daily scrum meeting,
sprint review meeting and sprint retrospective meeting.

Scrum Artifacts:
a. Product backlog: It is the complete list of requirements

– including bugs, enhancements requests, and usability
and performance improvements – that are not currently
in the product release.

b. Sprint backlog: It is the list of backlog items assigned
to a sprint, but not yet completed in common practice;
no sprint backlog item should take more than two days
to complete. The sprint backlog helps the team predict
the level of effort required to complete a sprint.

c. Burn down chart: This chart is updated every day,
shows the work remaining within the sprint. The burn
down chart is used to track sprint progress and to
decide when items must be removed from the sprint
backlog and deferred to the next sprint.

d. Release backlog: Requirements pulled from the
product backlog and identified and prioritized for an
upcoming release. The release backlog contains more
details about the requirement and low level estimate
which are usually estimated by the team performing the
work.

Scrum fits well into small projects. Some work releases are
created and requirements can be prioritized in a well-
structured manner.

D. Roles and Responsibilities
Scrum Master: Responsible to facilitate the communication
between product owner and team and ensures Scrum
practices and values are followed up to the end of the
project.
Product Owner: Responsible for the success of the product
and owns product backlog and manages the project and
controls and makes visible the Product Backlog list.
Scrum Team: Responsible to create a shippable
project/product based on client requirement in incremental
ways and has authority to decide actions and is self–
organizing so as to complete a Sprint.
Customer: Participates in product backlog items.
Management: Makes final decision and participates in
setting of goals and requirements.
E. Limitations
 Usually it works well with small team therefore

growing team may require extended coordination.
 The project is highly dependent on cohesiveness of the

team and the individual commitments of the team

members, a minor lack in coordination/ communication
may cause major impact in the sprint.

 Scrum does not explicitly address the issue of
criticality.

 Customer is offsite and tight customer collaboration is
not possible. Also improved team dynamics enabled by
Scrum are not available in one-developer project.

2.3 LEAN SOFTWARE DEVELOPMENT (LSD)
A. Background
It was adapted from Lean manufacturing of TOYOTA
production system and Bob Charette’s Lean development in
the 1980s. Lean Software Development Poppendieck &
Poppendieck in 2003 [9]. It focuses on the project
management aspects of a project and specifies no technical
practices; it integrates well with other agile methodologies,
such as XP, that focus more on the technical aspects of
software development.
B. Philosophy and Scope
Lean Software Development (LSD) is an iterative
methodology that focuses on reducing waste and optimizing
the entire process to achieve the maximum possible gain.
Lean has a rich history in manufacturing and has gained
popularity in software development in recent years. It
integrates well with the concept of six sigma [9].
Any software development project where there is need for
radical change. Focused at company CEOs. No team size
specifications because LD is more of a software
development management philosophy than a methodology.
C. Features and Benefits
Team Size and Iteration Length: Since Lean Software
Development is more of a management philosophy than a
development process, team size and iteration lengths are not
directly addressed.
Principles: Lean Software Development promotes seven
Lean principles. The methodology revolves around these
principles, and all other aspects of Lean are designed to
reinforce them. The seven principles are:
a. Eliminate Waste: Eliminate anything that does not add

customer value.
b. Build Quality In: Validate and re-validate all

assumptions throughout the process. If a metric or
practice no longer has value, discard it.

c. Create Knowledge: Use short iterative cycles to
provide quick, constant feedback to ensure the right
things are being focused on.

d. Defer Commitment: Don't make decisions until enough
is known to make the decision—a sound understanding
of the problem and the trade-offs of potential solutions
is required.

e. Deliver Fast: Minimize the time it takes to identify a
business problem and deliver a system or feature that
addresses it.

f. Respect People: Empower the team to succeed.
g. Optimize the Whole: Use cross-functional teams to

keep from missing important, possibly critical aspects
of the problem and of the system designed to solve it.

Usually only customer provides business requirement to the
team and play vital role. The prime objective is to eliminate
the waste and optimize the entire process to achieve the

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3629

maximum possible gain and it integrates well with the
concept of six sigma.

D. Roles and Responsibilities
No specific mention of roles and responsibilities except that
LD is aimed at CEOs before it can be implemented in
the organization.
E. Limitations
 The project is highly dependent on cohesiveness and

the individual commitments of the team members
therefore team building is critical factor.

 A missing or inappropriate involvement from
appropriate business analyst could result in scope
creep.

2.4 KANBAN
A. Background
The Kanban method as formulated by David J. Anderson. It
focuses on continuous flow of work instead of sprinting;
starting and stopping the delivery of work every 2 to 4
weeks.
B. Philosophy and Scope
 Kanban is taken from Japanese term which means
‘signboard’. Kanban is a visual process management system
that tells what to produce, when to produce it, and how
much to produce. It is a method for managing the creation
of products with an emphasis on continual delivery while
not overburdening the development team.
Like Scrum, Kanban is a process designed to help teams
work together more effectively. It uses the concept of
‘signboard’ using workflow status (such as TBD, WIP,
Done) that provides a comprehensive view of the project
and promotes the concept of ‘wide communication’. It
advises to reduce the stock level with an objective to reduce
the overhead cost and believes in JIT.
C. Features and Benefits
Kanban Principles: The 6 principles of Kanban are
Visualize the work flow, Limit WIP (Work in Progress),
Manage the work flow, Make processes/policies explicit,
Implement feedback loops, Improve collaboratively.

Kanban Practices: Start with what you do now, Agree to
pursue incremental, evolutionary change, Respect the
current processes, roles, responsibilities & job titles, and
Encourage acts of leadership at all levels.
D. Roles and Responsibilities
Kanban does not prescribe any roles. It depends on
company and team to decide. Kanban recommends
minimizing the cycle time, so if adding a role helps
minimize the cycle time, the role can be added and if it
makes the process slower, then the role should not be there.
Also, if the cost of the role is higher than the value of
improved cycle time, then it’s unnecessary overhead.
E. Limitations
 A small breakdown in Kanban system’s process can

result in entire line shutting down and recovery
requires an additional effort.

 The throughput of the Kanban system is not managed
instead it comes as a result of controlled WIP and
known cycle time.

2.5 ADAPTIVE SOFTWARE DEVELOPMENT (ASD)
A. Background
It was described by Jim Highsmith and Sam Bayer in 2000
[10]. ASD is part of rapid application development and
focuses on rapid creation and evolution of software
systems.
B. Philosophy and Scope
ASD is a method for creating and developing software
systems. It offers solutions for the development of large and
complex systems by incremental and iterative development,
with constant prototyping. It involves product initiation,
adaptive cycle planning, concurrent feature development,
quality review, and final quality assurance and release. It
relies on team members’ work at peer level. Usually
customer doesn’t have all the requirements in the beginning
and act as a member with the concept of progressive
elaboration.
It is essentially a management philosophy for agile projects
and therefore limited to project management activities. The
limits of this methodology when it comes to team sizes
depends on the size of the project, but like any other agile
methodology the level of agility decreases as the team gets
larger. The methodologies of communication determine the
rigor in a project and the support for distributed
development.
C. Features and Benefits
Phases: Speculate (initiation and planning), Collaborate
(concurrent feature development) and Learn (quality
review).

Lifecycle Characteristics: Mission focused, Time boxed,
Risk driven, iterative, Change tolerant, Feature based.
D. Roles and Responsibilities
Executive Sponsor: Person with overall responsibility for
the product.
Participants: in joint application development sessions
Developer: programmer.
Customer: User
2.6 FEATURE DRIVEN DEVELOPMENT (FDD)
A. Background
It arose in the late 1999 from collaboration between Jeff
DeLuca and Peter Coad and was later described by Palmer
and Felsing in 2002 [11, 12]. It focuses on the domain
model, there are five activities: Develop an overall model,
Build a list of features, Plan by feature, Design by feature
and Build by feature.
B. Philosophy and Scope
FDD focuses on the design and building phases,
emphasizes quality aspects throughout the process and
includes frequent and tangible deliveries, along with
accurate monitoring of the progress of the project. It is
simple to understand but powerful approach to build the
product or solutions [13].
FDD is limited to small to medium sized teams (4 - 20
people). The methodology deals with uncertain
requirements and center on Object Oriented modeling.
C. Features and Benefits
Team size: Team size varies depending on the complexity
of the feature at hand. DeLuca stresses the importance of
premium people, especially modeling experts.

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3630

Iteration length: Up to two weeks.
Phases: The five phases are Develop overall model; Build
the Feature, Plan by Feature, Design by Feature and Build
by Feature.
Practices: Domain Object Modeling, Developing by
Feature, Individual Class (Code) Ownership, Feature
Teams, Inspections, Configuration Management, Regular
Builds, Visibility of progress and results
Activities: Develop Overall Model, Build Feature List, Plan
By Feature, Design By Feature, Build By Feature,
Milestones.
Values: A system for building systems is necessary in order
to scale to larger projects, A simple, well-defined process
works best, Process steps should be logical and their worth
immediately obvious to each team member, Process pride
can keep the real work from happening, Good processes
move to the background so team members can focus on
results, Short, iterative, feature-driven life cycle are best.

D. Roles and Responsibilities
Project Manager: Responsible for all administrative aspects
of the project, including the financial and reporting ones.
Chief Architect: Responsible for the overall design of the
system, including running all design sessions, code reviews,
and technology decisions.
Development Manager: On the hook for the daily
development activities. Coordinating the development team
and their activities, and dealing with resource issues.
Chief Programmer: A senior developer involved in on-
going design and development activities, and is assigned to
be responsible for one or more Feature Sets.
Class Owner: A developer who works under the direction
of a Chief Programmer to design, code, test, and document
features as they are implemented.
Domain Expert: Any business related stakeholder who can
define required features that the system should provide.
These would include clients, users, and various analysts;
anyone who has knowledge of how the business works that
could impact the system.
Tester: Responsible for verifying that each feature performs
as defined.
Deploy Manager: Deals with not only the actual
deployment of code to various environments, but also the
definition and/or conversion of data from one format to
another.
Technical Writer: Responsible for creating and maintaining
all the online and printed documentation that a user will
need for the final system.
E. Limitations
 The FDD prescription does not specifically address

project criticality.

2.7 DYNAMIC SYSTEMS DEVELOPMENT METHOD

(DSDM)
A. Background
It was described by Stapleton in 1995 [14]. DSDM was
initially created in 1994 through collaboration of a large
number of project practitioners who were seeking to build
quality into Rapid Application Development (RAD). It
focuses upon early delivery of real benefits to the business.

B. Philosophy and Scope
DSDM is an iterative and incremental methodology that
combines the project and product management life cycle
into one best process. It was developed to fill in some of the
gaps in the RAD method by providing a framework which
takes into account the entire development cycle. It is a
proven framework for agile project management and
delivery, helping to deliver results quickly and effectively
as it concentrates on strategic goals and incremental
delivery of real business benefits while keeping control of
time, cost, risk and quality.
DSDM is not suitable for all projects. In particular, systems
that are real-time, safety critical, or have well defined
requirements are not suited to the use of DSDM. DSDM is
especially suited to projects with changing requirements. It
is critical that these requirements be capable of being
prioritized.

C. Features and Benefits
Team Size and Iteration Length: DSDM is not so much a
method as it is a framework. Because of DSDM’s
framework nature, it does not specifically address team size
and exact iteration lengths. Team size varies from two to
six people but there may be many teams in a project
Phases: The DSDM lifecycle has six stages: Pre-project,
Feasibility Study, Business Study, Functional Model
Iteration, Design and Build Iteration, Implementation, and
Post-project.
Principles: DSDM relies on nine principles: active user
involvement, teams must be empowered to make their own
decisions, frequent delivery of releases is more important
than maximizing quality, the primary criteria for
deliverables is meeting the business needs, iterative
development is essential to reach a correct solution, any
change during development can be reversed, the most high
level requirements should be unchangeable, testing shall
occur throughout the lifecycle of the project, all
stakeholders must cooperate and communicate.
Techniques: Time boxing, MoSCoW, Prototyping, Testing,
Workshop, and Modelling. MoSCoW is famous
prioritization technique, it indicates ‘Must have’, ‘Should
have’, ‘Could have’ and ‘Would nice to have’ while
prioritizing the features.
This is heavier than XP and Scrum. It provides a technique-
independent process and is flexible in terms of requirement
evolution. It is efficient in terms of budget and time.

D. Roles and Responsibilities
Executive Sponsor: An important role from the user
organisation who has the ability and responsibility to
commit appropriate funds and resources. This role has an
ultimate power to make decisions.
Visionary: The one who has the responsibility to initialise
the project by ensuring that essential requirements are
found early on. Visionary has the most accurate perception
of the business objectives of the system and the project.
Another task is to supervise and keep the development
process in the right track.
Ambassador: User Brings the knowledge of user
community into the project, ensures that the developers

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3631

receive enough amount of user’s feedbacks during the
development process.
Advisor: User can be any user that represents an important
viewpoint and brings the daily knowledge of the project.
Project Manager: Can be anyone from user community or
IT staffs who manages the project in general.
Technical Co-ordinator: Responsible in designing the
system architecture and control the technical quality in the
project.
Team Leader: Leads his team and ensures that the team
works effectively as a whole.
Solution Developer: Interpret the system requirements and
model it including developing the deliverable codes and
build the prototypes.
Solution Tester: Checks the correctness in a technical extent
by performing some testing’s, raise defects where necessary
and retest once fixed. Tester will have to give some
comments and documentation.
Scribe: Responsible to gather and record the requirements,
agreements, and decisions made in every workshop.
Facilitator: Responsible in managing the workshops
progress, acts as a motor for preparation and
communication.
Specialist Roles: Business Architect, Quality Manager,
System Integrator, etc.

E. Limitations
 It is based on user involvement which is not possible in

every project
 Because of its strictness and eight principles, the main

problem with DSDM is that it can be restrictive and
difficult to work with compared to other agile
development software methods.

2.8 AGILE MODELING (AM)
A. Background
Agile Modeling (AM) is proposed by Scott Ambler in 2002
[15]. It focuses only on documentation and modeling. It can
be used with any software development process as it’s not a
complete software development method.

B. Philosophy and Scope
AM is a new approach for performing modeling activities.
It attempts to adapt modeling practices using an agile
philosophy. It is a practice-based methodology for effective
modeling and documentation of software-based systems.
At a high level, it is a collection of best practices and at a
more detailed level, it is a collection of values, principles,
and practices for modeling software that can be applied on a
software development project in an effective and light-
weight manner. It is a supplement to other agile
methodologies such as Scrum, XP, and RUP and explicitly
included as part of the Disciplined Agile Delivery (DAD)
framework [16, 17]. The aim is to keep the amount of
models and documentation as low as possible. Cultural
issues are addressed by depicting ways to encourage
communication, and to organize team structures.
No specific team size is mentioned but the methodology
aims for small teams. The AMDD framework can be
combined with all non–modeling agile methodologies.

C. Features and Benefits
Team Size and Iteration Length: Since AM is not a
complete software process development method and should
be used with other development methods, the team size,
exact iteration lengths, distribution and system criticality
will depend on the development process being used

Values: include those of XP - communication, simplicity,
feedback and courage; and also include humility.

Goals: The three main goals of AM are to define and show
how to put into practice a collection of values, principles
and practices that lead to effective and lightweight
modelling; to address the issue on how to apply modeling
techniques on Agile software development processes; and
to address how you can apply effective modeling
techniques independently of the software process in use.

D. Roles and Responsibilities
AMDD teams are expected to come from developers and
project stakeholders. Teams should be composed of self–
motivated hard working developers. The modeling must be
done in teams where everyone must participate.

E. Limitations
Agile Modeling disciplines can be difficult to apply:
 On large teams (> 30) without adequate tooling

support.
 Where team members are unable to share and

collaborate on models (which would make Agile
Software Development in general difficult).

 When modeling skills are weak or lacking.

2.9 CRYSTAL
A. Background
It was developed by Alistair Cockburn in 2001. It focuses
more on people rather than process.

B. Philosophy and Scope
Crystal methods are collection of agile methods that selects
the most suitable one and tailoring them for each individual
project based on project complexity and team size. Larger
projects are likely to ask for more coordination and heavier
methods than smaller ones. It is demonstrated in four
colours: Red for extreme large size, Orange for large size,
Yellow for medium size and Clear that focuses on
communication in small teams developing software that is
not life-critical. Crystal methods involve frequent delivery;
reflective improvement; close communication; personal
safety; focus; easy access to expert users; and a technical
environment with automated testing, configuration
management, and frequent integration [17].
The Crystal family of methodologies is essentially a project
management philosophy that defines projects according to
team sizes. It is rather difficult to spell out the scope of
Crystal because the methodology provides a basis for
selecting and tuning other methodologies.

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3632

C. Features and Benefits
Team size: The Crystal Family accommodates any team
size; however, Cockburn puts a premium on premium
people. In Crystal Clear the team size is up to six
developers. In Crystal Orange the team size is from ten up
to forty developers. Crystal methodologies are not suitable
for life–critical systems.

Iteration length: Up to 4 months for large, highly critical
projects.

Properties: Frequent delivery, Reflection improvement,
Osmotic communication, Personal safety, Focus, Easy
access to expert users, Technical environment with
automated tests, configuration management and frequent
integration

Strategies: Exploratory 360°, Early victory, Walking
skeleton, Incremental, re-architecture, Information radiators

Techniques: Methodology shaping, Reflection workshop,
Blitz planning, Delphi estimation using expertise ranking,
Daily stand-up meetings, Essential interaction design,
Process miniature, Side-by-side programming, Burn charts

D. Roles and Responsibilities
Sponsor: Finances the project and delivers the mission
statement.
Senior Designer: Maintains team structure, implements
methodology, designs the system.
Designer/Programmer: Creates screen drafts, design
sketches and notes, common object model, source code,
packaged system, migration code, and test cases.
User: Helps with use case and screen drafts.
Business Expert: May come from the sponsor, the user or
the senior designer.
Coordinator/Tester/Writer: May come from the designers.
Crystal Orange has the following additional roles arranged
into teams: system planning, project mentoring,
architecture, technology, functions, infrastructure and
external test teams.

E. Limitations
 Crystal supports 4 basic criticalities: failure resulting in

loss of comfort, discretionary money, essential money,
and life.

2.10 AGILE UNIFIED PROCESS (AUP)
A. Background
Agile Unified Process (AUP) is a simplified version of the
IBM Rational Unified Process (RUP) developed by Scott
Ambler. Introduced in 2005 and revised in 2006 [18]. The
major enhancements focus is on real-time and web-based
development.

B. Philosophy and Scope
AUP describes a simple, easy to understand approach to
developing business application software using agile
techniques and concepts yet still remaining true to the RUP.
In 2012, the AUP was superseded by Disciplined Agile
Delivery. Since then work has ceased on evolving AUP.

The AUP applies agile techniques including test driven
development (TDD), Agile Modeling, agile change
management, and database refactoring to improve
productivity.

C. Features and Benefits
Disciplines: Each iteration consists of seven work areas or
disciplines performed during the iteration. Disciplines are
performed in an iterative manner, defining the activities
which development team members perform to build,
validate, and deliver working software which meets the
needs of their stakeholders. The seven disciplines are:

a. Model. The goal is to understand the business of the

organization, the problem domain being addressed by
the project, and identify a viable solution to address the
problem domain.

b. Implementation. The goal is to transform model(s) into
executable code and perform a basic level of testing, in
particular unit testing.

c. Test. The goal is to perform an objective evaluation to
ensure quality. This includes finding defects, validating
that the system works as designed, and verifying that
the requirements are met.

d. Deployment. The goal is to plan for the delivery of the
system and to execute the plan to make the system
available to end users.

e. Configuration Management. The goal is to manage
access to project artifacts. This includes not only
tracking artifacts versions over time but also
controlling and managing changes to them.

f. Project Management. The goal is to direct the activities
that take place within the project. This includes
managing risks, directing people (assigning tasks,
tracking progress, etc.), and coordinating with people
and systems outside the scope of the project to be sure
that it is delivered on time and within budget.

g. Environment. The goal is to support the rest of the
effort by ensuring that the proper process, guidance
(standards and guidelines), and tools (hardware,
software, etc.) are available for the team as needed.

For each discipline, AUP defines sets of Artifacts (work
products), Activities (units of work on the artifacts); and
roles (responsibilities taken on by development team
members).

AUP Philosophies
a. Your staff knows what they're doing. People are not

going to read detailed process documentation, but they
will want some high-level guidance and/or training
from time to time. The AUP product provides links to
many of the details, if you are interested, but doesn't
force them upon you.

b. Simplicity. Everything is described concisely using a
handful of pages, not thousands of them.

c. Agility. The Agile UP conforms to the values and
principles of the agile software development and the
Agile Alliance.

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3633

d. Focus on high-value activities. The focus is on the
activities which actually count not every possible thing
that could happen to you on a project.

e. Tool independence. You can use any toolset that you
want with the Agile UP. The recommendation is that
you use the tools which are best suited for the job,
which are often simple tools.

f. You'll want to tailor the AUP to meet your own needs.

AUP Phases
The overall development cycle consists of four phases:
Phase 1: Inception: The goal is to identify the initial scope
of the project, a potential architecture for your system, and
to obtain initial project funding and stakeholder acceptance.
 Phase 2: Elaboration: The goal is to prove the architecture
of the system.
Phase 3: Construction: The goal is to build working
software on a regular, incremental basis which meets the
highest-priority needs of your project stakeholders.
Phase 4: Transition: The goal is to validate and deploy
your system into your production environment.
Each phase can be further broken down into Iterations.
Iteration is a complete development loop resulting in a
release of an executable increment to the system.

AUP Releases
The Agile Unified Process distinguishes between two types
of iterations: A development release iteration results in a
deployment to the quality-assurance and/or demo area and a
production release iteration results in a deployment to the
production area. This is a significant refinement to the
Rational Unified Process.

D. Limitations
 Tackling model inconsistency is not explicitly

addressed.
 Modeling may risk agility if limits are not strictly

observed; the list of AUP’s models that are produced as
the absolute minimum is actually quite long.

 The AUP isn't for everyone. XP users will likely find
the AUP fairly heavy, and "traditional RUP" users may
find that it's too streamlined. If you want something
lighter, then XP is highly suggested. If detailed, well-
defined software process is required, then it is highly
suggested to consider RUP. Management seems to
prefer RUP than developers due to the large number of
artifacts and has a lot to offer, and can be cut down to
something quite useful. The AUP lands between the
two, adopting many of the agile techniques of XP and
other agile processes yet retaining some of the
formality of the RUP.

III. ADVANTAGES OF AGILE SOFTWRE DEVELOPMENT
The key benefits of adopting agile methodology [24, 25] in
software development processes explained in detail as
follows:
1. Rapid, iterative and incremental delivery: Project

delivery is divided into small functional releases to
check functionality, to manage risk and to get early
feedback from customer and end users. These new and

small features releases are delivered quickly and
frequently on a fixed schedule iterations of 1-4 weeks
each, with a high level of predictability. Project plans,
requirements, design, code and tests are created
initially and updated incrementally as required to adapt
to project changes. This helps in checking and
monitoring the software functionality progress
frequently rather than at end of long milestones.

2. Increased performance: Daily stand-up meetings
provide an opportunity to exchange valuable
information and to fine tune improvements
continuously. The ability to discuss complex projects
through simple stories and simple design encourages
teamwork. Frequent and better communication leads to
increased knowledge sharing and trust among team
members which increases the team productivity and
generates better performance in terms of good Return
on Investment.

3. Flexibility of design: Flexibility is based on the
development process used for the project and is defined
as ability to change directions quickly. The main
feature of Agile approach is to adapt to changing
requirements quickly which enables the design to be
made flexible that can handle changes easily.

4. Adaptive to the changing environment: Using agile
software development approach, software is developed
over several iterations. Each iteration is characterized
by analysis, design, coding and testing. The working
software is delivered to the customer and end user for
their use and feedback after every iteration. Agile
approach encourages and implements any change
requirement from the customer at any stage of
development to upgrade the software.

5. Reduces risks of development: As the incremented
mini software is delivered to the customers after every
short development cycle and feedbacks are taken from
the customers, it warns developers about the upcoming
problems which may occur at the later stages of
development. It also helps to discover errors quickly
and they are fixed immediately.

6. Working software: Agile development’s commitment
to the delivery of working, tested software at recurrent
intervals ensures a much greater reliability and
opportunity to incorporate the user and technology-
driven feedback. Agile practices focus on working
software that provides greater feedback which makes
agile projects easier to manage and customer gets the
best product as learning is incorporated.

7. Ensures customer satisfaction: Agile methodology
encourages active customer involvement throughout
the software development lifecycle. The deliverables
developed after each iteration is given to the user for
use and improvement is done based on the customer
feedback only. So at the end what we get as the final
product is of high quality and ensures the customer
satisfaction as the entire software is developed based
on the requirements taken from customer.

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3634

8. Avoids over production: The traditional system
requirement document is still built where many
features are not wanted or required. These “low” or
“no” value features are at the bottom of the backlog but
they still get built in Waterfall. On contrary, Agile
approach builds the best product by building it for now
and not later.

9. Improvement in quality: Breaking down the project
into manageable units or sprits allows the project team
to focus on high quality development, testing, and
collaboration. Quality is also improved by producing
frequent builds and conducting continuous testing and
customer feedback during each iteration. Test-driven
development and refactoring is often used in finding
and fixing defects quickly and identifying expectation
mismatches early that leads to higher code reuse and
better quality.

10. Least documentation: The documentation in agile
methodology is short and to the point as internal design
of the software is usually not documented. The main
content in the documentation are product features list,
duration for each iteration and date which saves the
development time and deliver the project in least
possible time.

11. Fault detection: Organizational processes demand
high quality bug free software. A continuous testing
and integration characteristic of agile methodologies
such as XP enforces the delivery of high quality bug
free software. As testing is performed during each
iteration, error and faults are identified earlier and are
fixed instantaneously before it increases in severity.
Automated tests find regression defects earlier,
continuous integration finds defects earlier, pair
Programming finds defects much sooner earlier. Also,
continuous testing allows continuous testing feedback,
which further improves code developed in future
iterations.

12. Best practices: Incorporating some well-known Agile
practices can help the teams employ highly competent,
well-tested applications across the required spectrum of
platforms and devices. Agile forces “architecture
killers” to the start of the project. Better to fail early,
not late - when all the money has been spent, most
changes have low cost of change.

Agile software development approach not only provides
benefits to the development team, but also provides number
of business benefits to the client. Agile addresses many of
the most common project drawbacks, such as budget
control, schedule predictability and scope creep.

IV. DISADVANTAGES OF AGILE SOFTWARE DEVELOPMENT

Besides many advantages of using agile software
development method and like traditional methods, the agile
methods also have some limitations and have also been
criticized by some practitioners and researchers, mainly
focusing on following aspects [6, 10, 11, 20, 21, 23, 24,
25]:
1. Not suitable for large projects: An agile development

method is suitable for small teams, but does not scale

well to larger projects, as numerous iterations are
needed to complete the desired functionality. On a
large scale project, opportunity cost to employ agile
methods may be too high for a foregone production on
more profitable and lean projects.

2. Customer interaction: Agile requires active user
involvement and close collaboration with the project
team throughout the software development cycle. This
practice of Agile is very rewarding and ensures
delivery of the right product. However, in practice,
these principles are very demanding on the user
representative’s time and require a big commitment for
the duration of the project.

3. Insufficient and unclear requirements: Agile
requirements are usually insufficient and unclear which
eliminates wasted effort on deliverables that don’t last
which controls budget and schedule. The requirements
are clarified and specified during the development
phase just in time and documented in much less detail
due to the timeliness of conversations. However, this
provides limited information to new starters in the team
about product features and how they should work.
Agile methodology is based on customer involvement
because the entire project is developed according to the
requirements given by the customers. So if the
customer representative is not clear about the product
features and final outcome, the development process
and project can easily get taken off track.

4. Changing requirements: Requirements emerge and
evolve throughout the development lifecycle which
means flexibility to makes change as needed to ensure
delivery of the right product. However, this principle of
Agile creates the risk of never ending projects and
there is much less predictability during of the project
lifecycle final product delivery requirement. Without
the maturity of a strong and clear vision, and the
discipline of fixing schedule, budget and scope is
harder. Agile is time consuming and can cause wastage
of resources because of constant change of
requirements. If the customers are not satisfied by the
partial software developed by certain iteration and they
change their requirements then that incremented part is
of no use. So it is the total wastage of time, effort and
resources required to develop that increment.

5. Difficulty in integration testing: Testing is integrated
throughout the product development lifecycle which
ensures the quality throughout the project without the
need for an extensive test phase at the end of the
project. This practice of Agile demands testers
throughout the project which increases the cost of
resources on the project. The cost of a long and
unpredictable test phase can cause huge unexpected
costs when a project over-runs. It does have the effect
of reducing some very significant risks that have
proven through research to cause many projects to fail.
Also, there is an additional cost to the project to adopt
continuous testing throughout.

6. Frequent delivery: Adopting an Agile method
promotes frequent delivery of product, followed by
User Acceptance Testing (UAT) for which the product

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3635

owner needs to be available for prompt testing of the
features as they are delivered and throughout the entire
duration of the project. This exercise can be quite time
consuming but helps drastically to ensure a quality
product that meets user expectations. The feedback is
that agile practice is rather intense for developers as
they are required to complete each feature 100% within
each iteration, and the endlessness of iterations can be
mentally tiring, so it’s important to find a sustainable
pace for the team.

7. Lack of documentation: Though the least
documentation saves lot of development time as an
advantage of Agile method but it is a big disadvantage
for the developer. Since internal design changes
frequently based upon users changing requirements
after every iteration, it is not possible to maintain the
detail documentation of design and implementation
because of project deadline. Therefore, due to limited
available information, it is very difficult for the new
developers who join the development team at the later
stage to understand the actual method followed to
develop the software.

8. More helpful for management than developer: The
agile methodology helps management to take decisions
about the software development, set goals for
developers and fix the deadline for them. But it is very
difficult for the baseline developers to cope up with the
ever changing environment, changing design and code
based on just in time requirements. Management
overhead is also increases as successful application of
an agile methodology requires strong teamwork and the
project manager should always be involved in the
dynamics of the team.

9. Culture and co-located teams: Many times
application development teams are located in different
parts of the globe, making in person face to face
communication almost impossible. To overcome this
problem, most developers use video conferencing tool
to deliver high quality product.

10. Experienced resources: Agile approach allows only
senior programmers to take decisions required during
the development process and does not allow novice
developers to make decisions unless combined with
experienced resources. Another limitation is that agile
methodologies concentrate work quality on the skills
and behaviours of the developers, as the design of the
modules and sub-modules are created mainly by single
developer. Agile methodologies will not provide the
best solution, when developing reusable software as it
focuses in building a system to solve specific problems,
and not the general ones. So, Agile works best for
relatively small team’s members as compared to large
teams.

11. Traditional waterfall development mind set:
Organizations steeped in waterfall development mind
set are reluctant to adopt agile methodologies. In Agile
software development method, the main emphasis is on
development rather than design. It basically focuses on
processes for getting requirements and developing code
and does not focus on product design which can be

sometimes challenging. Agile is also not suitable for
maintenance due to less documentation for the systems.

12. Unfamiliarity with Agile: To get the advantages of
applying agile methodologies in the development, there
is a set of assumptions that are assumed to be true. To
mention some are: cooperation and face to face relation
between the customers and the development team;
evolving and changing requirements of the project;
developers having good individual skills and
experiences. If these assumptions do not apply to a
software development project, then it is better to look
for other methodologies to apply for the development
process, in order to get better results.

V. CONCLUSION
Traditional software development approaches have a
potential to provide straightforward, systematic, and
organized process in the software development. However,
the traditional approaches have limitations, which include
slow adaptation to rapidly changing business requirements,
a tendency to be over budget and behind schedule, a lack of
dramatic improvements in productivity, reliability, and
simplicity.
Agile development methodology is a conceptual framework
for undertaking any software engineering project. In general
agile approach can provide a shorter development cycle,
higher customer satisfaction, and quicker adaptation to
rapidly changing business requirements. It also attempts to
minimize risk and maximize productivity by delivering
working software in short iterations that increases the
internal and external practices of the software development.
A selection and implementation of appropriate process is
crucial as it ensures the organization to maximize their
chance to deliver their software successfully with long term
implications.

REFERENCES
[1] Agile Alliance. “Principles behind Agile Manifesto”.

www.agilemanifesto.org/principles.html, 2006.
[2] Beck, Kent, "Manifesto for Agile Software Development". Agile

Alliance, http://agilemanifesto.org, 2001.
[3] Beck, K. and C. Andres, “Extreme Programming Explained” (2nd

Edition), Addison-Wesley Professional, 2004.
[4] Beck, Kent, “Extreme Programming Explained: Embrace Change”,

Addison-Wesley, ISBN 0-201-61641-6, 2000.
[5] Beck, Kent, “Extreme Programming Explained: Embrace Change”,

second ed., Addison-Wesley, ISBN 978-0321278654, 2004.
[6] D. Cohen, M. Lindvall, P. Costa, “An introduction to agile methods,

in: M.V. Zelkowitz (Ed.)”, Advances in Computers, Advances in
Software Engineering, vol. 62, Elsevier, Amsterdam, 2004.

[7] Schwaber, K. and M. Beedle, “Agile Software Development with
Scrum”, Prentice Hall PTR, 2001.

[8] K. Schwaber, M. Beedle, “Agile Software Development with
Scrum”, Prentice Hall, Upper Saddle River, 2001.

[9] M. Poppendieck, T. Poppendieck, “Lean Software Development: An
Agile Toolkit for Software Development Managers”, Addison-
Wesley, Boston, ISBN 0-321-15078-3, 2003.

[10] Highsmith, J., “Adaptive software development: a collaborative
approach to managing complex systems”, Dorset House Publishing
Co., Inc, 2000.

[11] Coad, P., J. deLuca, et al., “Java Modeling Color with Uml:
Enterprise Components and Process with CDROM”, Prentice Hall
PTR, 1999.

[12] Palmer, S. R. and M. Felsing, “A Practical Guide to Feature-Driven
Development”, Pearson Education, 2001.

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3636

[13] S.R. Palmer, J.M. Felsing, “A Practical Guide to Feature-driven
Development”, Prentice Hall, Upper Saddle River, NJ, ISBN 0- 13-
067615-2, 2002.

[14] A. P. Framework and I. DSDM, “Introduction Introducing the
DSDM ® Agile Project Framework”.

[15] Agile Modeling (AM) Home Page, “Effective Practices for Modeling
and Documentation” (http://www.agilemodeling.com/).

[16] Ambysoft. “The Agile System Development Life Cycle (SDLC)”,
http://www.ambysoft.com/essays/agileLifecycle.html#Cycle0, 2011.

[17] A. Cockburn, “Crystal Clear: A Human-Powered Methodology for
Small Teams”, Addison-Wesley, ISBN 0-201-69947-8, 2004.

[18] Waters, John K, "Agile lands role in games and business software",
2008.

[19] http://www.ambysoft.com/unifiedprocess/agileUP.html.
[20] H. Merisalo-Rantanen, T. Tuure, R. Matti, “Is extreme programming

just old wine in new bottles: a comparison of two cases, Journal of
Database Management” 16 (4) (2005) 41–61, 2005.

[21] M. Stephens, D. Rosenberg, “Extreme Programming Refactored: The
Case Against XP”, Apress, Berkeley, CA, ISBN 1-59059-096-1,
2003.

[22] P. Mcbreen, “Questioning Extreme Programming”, Pearson
Education, Boston, MA, USA, ISBN 0-201-84457-5, 2003.

[23] Kelly Waters, “Disadvantages of Agile Development”,
http://www.allaboutagile.com/disadvantages-of-agile-development.
Sept. 2007.

[24] Gaurav Kumar, Pradeep Kumar Bhatia, “Impact of Agile
Methodology on Software Development Process”, International
Journal of Computer Technology and Electronics Engineering
(IJCTEE) Volume 2, Issue 4, August 2012.

[25] Sheetal Sharma”Agile Processes and Methodologies: A Conceptual
Study”, International Journal on Computer Science and Engineering
(IJCSE). Vol. 4 No. 5. May 2012.

 .

Harleen K. Flora et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3626-3637

www.ijcsit.com 3637

